ADDRESSING LIMITATIONS TO SEED RECRUITMENT IN LARGE SCALE RESTORATION

David Merritt, Todd Erickson, Miriam Muñoz-Rojas, Shane Turner, Andrew Guzzomi

Department of **Biodiversity,** Conservation and Attractions

Mine site restoration in the Pilbara

- 180,000 km² arid landscapes.
- Low woodlands (Acacia, Eucalyptus) over hummock grassland (Triodia).

- 795mt iron ore worth \$63b in 2017.
- Mining disturbance exceeds 2300 km².
- Ministerial requirement to restore vegetation comparable to the pre-disturbed landscape (= high diversity).
- Large deficit of topsoil = seed input.
- Seeding with non-treated seeds and limited knowledge of seed quality, storage, and germination capabilities.

Operating mines and infrastructure

Mines Source: Department of Mines and Petroleum, Mindex database: "Site _Stage" = Operating

Tenure Source: Australian Government Department of the Environment, Pilbara IBRA Region; Department of Mines and Petroleum, Tenement database; and The Department of Environment and Conservation, DEC Managed Lands & Waters

Projected cumulative mining

Mines Source:

Department of Mines and Petroleum, Mindex database: "Site Stage" = Operating

Tenure Source: Australian Government Department of the Environment, Pilbara IBRA Region; Department of Mines and Petroleum, Tenement database; and The Department of Environment and Conservation, DEC Managed Lands & Waters

With our present capacity: Arid zone landscapes – limited topsoil

Pilbara region of Western Australia

120,000 ha (1200 km²) requiring rehabilitation Equates to 600 tonnes wild collected seed at 5 kg/Ha. Current collection capability: 6 tonnes pa.

Source: Wildlife Licensing, Nature Protection Branch, DPaW (2014)

Significant and increasing demand for wild seed is coupled with huge losses in restoration

Seedling Establishment

Region	Biome	Establishment
		Rate (%)
Australia	Mediterranean woodland	0-17% ^A
Australia	Arid shrubland	0 – 8% ^B
Australia	Tropical rainforest	1-33% ^C
USA	Sagebrush Steppe	5 – 30% ^D
USA	Arid grassland	7 – 17% ^E

Source: ^ATurner *et. al.* (2006);^BCommander *et. al.* (2013), Golos (2012);^CDoust *et. al.* (2007); ^DChambers (2000); ^EJames *et. al.* (2011);

Merritt and Dixon, (2014). *State of the World's Forest Genetic Resources*, FAO and Bioversity International.

Research focus for seed use in restoration

- Majority of recruitment failure is between germination and emergence.
- Poor management of seed quality and dormancy further contributes to lack of recruitment.
- Holistic management of seeds is necessary for diverse seed mixes.
- Need to engineer the niche through seed enhancement and growth media management.

Seed Technology Research Programs

Level of effective knowledge

High

Low

Seed banking in industry for restoration

- Pros
 - Cool storage temperature. •
 - Most accessions labelled with species name.
- Cons
 - Most labelling missing collection year, location, accession number.
 - Species ID not verified.
 - Species diversity low.
 - Volume of seed low relative to restoration area.
 - No information on seed quality available.
 - Seeds not dried prior to storage.
 - Seeds packaged in plastic or hessian bags.
 - Little knowledge of seed pre-treatments required.
 - Storage duration exceeds 10 years for seeds in hessian bags.
 - Seeds left outside in the sun.

Seed longevity is a complex trait

N=207

Restoration seed banking

Protection of seed quality is paramount. Flexibility in storage conditions is ideal.

Storage conditions should consider:

- Seed type (longevity, storage behaviour, dormancy type).
- Storage duration.
- Designated end use of seeds.

On-demand seed pre-treatments at scale

- Simple, reliable and repeatable.
- Applicable to large quantities of seed.

Easy for some.....

.....not so easy for others.

Seed dormancy types in the Pilbara

Physiological Dormancy (PD) Asteraceae Poaceae Eremophila Grevillea Goodenia Maireana

Physical Dormancy (PY) Fabaceae Sapindaceae

Non-dormant (ND) *Eucalyptus Corymbia Hakea*

PY+PD Malvaceae

MPD Hibbertia

Seed ecology has a clear role in developing germination methods

- Timing of seed maturation and seed dispersal.
- Soil temperature fluctuations (seasonal and diurnal).
- Rainfall data.
- Dormancy type.

 Design experiments that define the influence of temperature, moisture, light, other external cues as appropriate to the environment.

Erickson et al (2016) Rest. Ecol. 24(S2): S64-S76

Seed regeneration traits

Dormancy Germination Speed of germination Emergence depth Base water potential Soil temperature/moisture influences Seed persistence

Seed enhancement and delivery

Priming

Improved vigour:

- Increased speed germination.
- Greater uniformity germination.
- Increased stress tolerance.

Coating and pelleting

Enhanced delivery:

- Uniformity of size and weight.
- Incorporation of chemical/biological agents.
- Reduced predation.

Direct seeding

Mechanised delivery:

- Precision sowing of mixed species.
- Defined seeding rate.
- Controlled sowing depth.

- ••••• % seeds/florets germ in field
- ••••• % viable seeds/florets remaining in field

Should we sow dormant seeds and let nature take its course?

- Have smoke requiring seeds.
- Have PY seeds 5 yrs in the soil and still all dormant.
- Predation, erosion, viability decline.

Should we alleviate dormancy in all seeds?
Reduced persistence in PD seeds of framework species.

• Should we de a 50/50 blend and build in bet-hedging?

 Can we "re-engineer" persistence through enhancement?

Acknowledgements

The second second

Todd Erickson Miriam Munoz Rojas Shane Turner Andrew Guzzomi **Amber Bateman** Alison Ritchie **Olga Kildisheva** Emma Dalziell Wolfgang Lewandrowski **David Symons Christine Best Elvan Ling** Monte Masarei

Matt Madsen Jeremy James Scott Abella Steve Wishart Tony Webster Stephen White Pamela Chester Leanne VanDenAvoort Barry Jilbert Blair Parsons Glen Steven